Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Hum Vaccin Immunother ; 18(5): 2087412, 2022 11 30.
Article in English | MEDLINE | ID: covidwho-1984956

ABSTRACT

This article describes the results of a preclinical safety and immunogenicity study of QazCovid-in®, the first COVID-19 vaccine developed in Kazakhstan, on BALB/c mice, rats, ferrets, Syrian hamsters and rhesus macaques (Macaca mulatta). The study's safety data suggests that this immunobiological preparation can be technically considered a Class 5 nontoxic vaccine. The series of injections that were made did not produce any adverse effect or any change in the general condition of the model animals' health, while macroscopy and histology studies identified no changes in the internal organs of the BALB/c mice and rats. This study has demonstrated that a double immunization enhances the growth of antibody titers as assessed by the microneutralization assay (MNA) and the enzyme-linked immunosorbent assay (ELISA) in a pre-clinical immunogenicity test on animal models. The best GMT results were assessed in MNA and ELISA 7 days after re-vaccination; however, we noted that GMT antibody results in ELISA were lower than in MNA. A comparative GMT assessment after the first immunization and the re-immunization identified significant differences between model animal groups and a growth of GMT antibodies in all of them; also, differences between the gender groups were statistically significant. Moreover, the most marked MNA immune response to the QazCovid-in® vaccine was seen in the Syrian hamsters, while their SARS-CoV-2-specific antibody activity as assessed with ELISA was the lowest.


Subject(s)
COVID-19 , Viral Vaccines , Cricetinae , Mice , Animals , Humans , Rats , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , SARS-CoV-2 , Macaca mulatta , Mesocricetus , Ferrets , Antibodies, Viral , Vaccines, Inactivated/adverse effects , China , Immunogenicity, Vaccine , Antibodies, Neutralizing
2.
AAPS PharmSciTech ; 22(5): 172, 2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1261286

ABSTRACT

Vaccination development and production was an essential question for the prevention and global control of COVID-19. The strong support from governing authorities such as Operation Warp Speed and robust funding has led to the development and authorization of the tozinameran (BNT162b2) vaccine. The BNT162b2 vaccine is a lipid nanoparticle-encapsulated mRNA that encodes for SARS-CoV-2 spike protein, the main site for neutralizing antibodies. Once it binds with the host cells, the lipid nanoparticles enable the transfer of the RNA, causing S antigens' expression of the SARS-CoV-2, conferring immunity. The vaccine is administered as a 2-dose regime 21 days apart for individuals 16 years and older. Pfizer-BioNTech's BNT162b2 vaccine was the first candidate to receive FDA-Emergency Use Authorization (EUA) on December 11, 2020. During phase 2/3 clinical trials, 95% efficacy was reported among 37,706 participants over the age of 16 who received the BNT162b2 vaccination; additionally, 52% efficacy was noted 12 days following the administration of the first dose of BNT162b2, reflecting early protection of COVID-19. The BNT162b2 vaccine has exhibited 100% efficacy in clinical trials of adolescents between the ages of 12 and 15. Clinical trials in pregnant women and children under the age of 12 are expected to also exhibit promising results. This review article encompasses tozinameran (BNT162b2) vaccine journey, summarizing the BNT162b1 and BNT162b2 vaccines from preclinical studies, clinical trial phases, dosages, immune response, adverse effects, and FDA-EUA.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Clinical Trials as Topic/methods , Drug Approval/methods , SARS-CoV-2/drug effects , Animals , Antibodies, Neutralizing/drug effects , Antibodies, Neutralizing/metabolism , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/metabolism , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/metabolism , Clinical Trials as Topic/legislation & jurisprudence , Drug Approval/legislation & jurisprudence , Drug Evaluation, Preclinical/methods , Exanthema/chemically induced , Female , Humans , Male , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Vaccination/legislation & jurisprudence , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL